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The collective elementary excitations of two-dimensional magnetoexcitons in a Bose–Einstein con-

densate (BEC) with wave vector k
!
¼ 0 were investigated in the framework of the Bogoliubov theory of

quasi-averages. The Hamiltonian of the electrons and holes lying in the lowest Landau levels (LLLs)

contains supplementary interactions due to virtual quantum transitions of the particles to the excited

does not vanish and their BEC becomes stable. The energy spectrum contains only one gapless, true

Nambu–Goldstone (NG) mode of the second kind with dependence oðkÞ � k2 at small values k

describing the optical-plasmon-type oscillations. There are two exciton-type branches corresponding

to normal and abnormal Green’s functions. Both modes are gapped with roton-type segments at

intermediary values of the wave vectors and can be named as quasi-NG modes. The fourth branch is the

acoustical plasmon-type mode with absolute instability in the region of small and intermediary values

of the wave vectors. All branches have a saturation-type dependencies at great values of the wave

vectors. The number and the kind of the true NG modes are in accordance with the number of the

broken symmetry operators.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A two-dimensional electron system in a strong perpendicular
magnetic field reveals fascinating phenomena such as the integer
and fractional quantum Hall effects. The discovery of the frac-
tional quantum Hall effect (FQHE) fundamentally changed the
established concepts about charged single-particle elementary
excitations in solids [1,2].

In this paper we study a coplanar electron-hole system with
electrons in a conduction band and holes in a valence band, both
of which have Landau levels in a strong perpendicular magnetic
field. Earlier, this system was studied in a series of papers [3–9]
mostly dedicated to the theory of two-dimensional magnetoexci-
tons. This system bears some resemblance to the case of a bilayer
electron system with half-filled lowest Landau levels in the
conduction bands of each layer [10]. The coherent states of
electrons in two layers happened to be equivalent to the BEC of
the quantum Hall excitons [11] formed by electrons and holes in
different layers. The system we are interested in has only one
layer, with electrons in conduction band and holes in the valence
ll rights reserved.

: þ373 22 738149.

v).
band of the same layer created by optical excitation or by p–n

doping injection (both of these methods can be called ‘‘pump-
ing’’). In the case of a single excited layer which we consider, the
density of excitons can be quite low, so that the electron Landau
level and the separate hole Landau level are each only slightly
occupied, and Pauli exclusion and phase space filling do not come
in to play.
2. Hamiltonian of the Bose–Einstein condensation of
magnetoexcitons

The effective Hamiltonian describing the interaction of elec-
trons and holes lying on the LLLs is

H¼HCoulþHSuppl: ð1Þ

Here ĤCoul is the Hamiltonian of the Coulomb interaction of the
electrons and holes lying on their LLLs

ĤCoul ¼
1

2

X
Q
!

W
Q
!½r̂ðQ

!
Þr̂ð�Q
!
Þ�N̂e�N̂h��meN̂e�mhN̂h ð2Þ

and ĤSuppl is the supplementary indirect interactions between
electrons and holes that appear due to the simultaneous virtual

www.elsevier.com/locate/ssc
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dx.doi.org/10.1016/j.ssc.2012.11.006
dx.doi.org/10.1016/j.ssc.2012.11.006
dx.doi.org/10.1016/j.ssc.2012.11.006
mailto:dum@phys.asm.md
dx.doi.org/10.1016/j.ssc.2012.11.006


S.A. Moskalenko et al. / Solid State Communications 155 (2013) 57–6158
quantum transitions of two particles from the LLLs to excited
Landau levels (ELLs) and their return back during the Coulomb
scattering processes. This interaction was deduced in Ref. [9]. It
has the form

Hsuppl ¼
1

2
Bi�i

bN� 1

4N

X
Q

VðQ Þr̂ðQ
!
Þr̂ð�Q
!
Þ

�
1

4N

X
Q

UðQ ÞD̂ðQ
!
ÞD̂ð�Q
!
Þ: ð3Þ

The coefficients Bi�i, V(Q), and U(Q) are proportional to the small
parameter r¼ Il=ð_ocÞo1, where Ilffi

ffiffiffi
B
p

is the ionization poten-
tial of the magnetoexciton, _oc � B is the cyclotron energy, and B

is the magnetic field strength [9]. The degeneracy of the Landau
level N equals S=ð2pl2Þ, where l is the magnetic length l2 ¼ c_=eB

and S is the surface layer area. Here r̂ðQ
!
Þ are the density

fluctuation operators expressed through the electron r̂eðQ
!
Þ and

hole r̂hðQ
!
Þ density operators as follows:

breðQ
!
Þ¼
X

t

eiQytl2 ayt�Qx=2atþQx=2,

brhðQ
!
Þ¼
X

t

eiQytl2 bytþQx=2bt�Qx=2,

r̂ðQ
!
Þ¼ r̂eðQ

!
Þ�r̂hð�Q

!
Þ,

D̂ðQ
!
Þ¼ r̂eðQ

!
Þþ r̂hð�Q

!
Þ,

N̂e ¼ breð0Þ, N̂h ¼ brhð0Þ, N̂ ¼ N̂eþN̂h,

W
Q
!¼

2pe2

e0S9Q
!

9
e�Q2 l2=2: ð4Þ

The density operators are integral two-particle operators. They
are expressed through the single-particle creation and annihila-
tion operators ayp,ap for electrons and byp,bp for holes. e0 is the
dielectric constant of the background; me and mh are chemical
potentials for electrons and holes respectively. Coefficients V(Q),
U(Q), and Bi�i were deduced in [9,12].

As discussed in previous papers [5–9,13], the breaking of the
gauge symmetry of the Hamiltonian (1) can be achieved using the
Keldysh–Kozlov–Kopaev [14] method with the unitary transfor-
mation

T̂ ð
ffiffiffiffiffiffiffiffi
Nex

p
Þ ¼ exp½

ffiffiffiffiffiffiffiffi
Nex

p
ðdyð k
!
Þ�dð k
!
ÞÞ�, ð5Þ

where dyðkÞ and d(k) are the creation and annihilation operators of
the magnetoexcitons respectively and k

!
is the wave vector of the

condensate. In the electron-hole representation they are [5–9]

dyð P
!
Þ¼

1ffiffiffiffi
N
p

X
t

e�iPytl2 ay
tþ Px

2

by
�tþ Px

2

,

dð P
!
Þ¼

1ffiffiffiffi
N
p

X
t

eiPytl2 b
�tþ Px

2
atþ Px

2
: ð6Þ

BEC of magnetoexcitons leads to the formation of a coherent
macroscopic state as a ground state of the system with wave
function

9cgðkÞS¼ T̂ ð
ffiffiffiffiffiffiffiffi
Nex

p
Þ90S, ap90S¼ bp90S¼ 0: ð7Þ

Here 90S is the vacuum state for electrons and holes. Though we
kept arbitrary value of k

!
, nevertheless our main goal is the BEC

with k
!
¼ 0 and we will consider the interval 0:54klZ0. The

function (7) will be used in Section 3 to calculate the averages
values of the type /DðQ

!
ÞDð�Q
!
ÞS. The transformed Hamiltonian

(1) looks like

Ĥ ¼ Tð
ffiffiffiffiffiffiffiffi
Nex

p
ÞHTyð

ffiffiffiffiffiffiffiffi
Nex

p
Þ ð8Þ

and is succeeded, as usual, by the Bogoliubov u–v transformations
of the single-particle Fermi operators
ap ¼ T̂ ð
ffiffiffiffiffiffiffiffi
Nex

p
ÞapT̂

y
ð
ffiffiffiffiffiffiffiffi
Nex

p
Þ ¼ uap�v p�

kx

2

� �
bykx�p,

ap9cgðkÞS¼ 0,

bp ¼ T̂ ð
ffiffiffiffiffiffiffiffi
Nex

p
ÞbpT̂

y ffiffiffiffiffiffiffiffi
Nex

p� �
¼ ubpþv

kx

2
�p

� �
aykx�p,

bp9cgðkÞS¼ 0: ð9Þ

Here vðtÞ ¼ ve�ikytl2 . The coefficients u¼ cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl2nex

q
Þ and v¼ sin

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl2nex

q
Þ were determined in Ref. [8]. The equality v¼ sinðvÞ

can be satisfied only at vo1.
Along with this traditional way of transforming the expres-

sions of the starting Hamiltonian (1) and of the integral two-
particle operators (4) and (6), we will use the method proposed
by Bogoliubov in his theory of quasi-averages [15], remaining in
the framework of the original operators. The new variant is
completely equivalent to the previous one, and both of them
can be used in different stages of the calculations. For example,
the average values of products of two integral two-particle
operators can be calculated using the wave function (7) and u–v

transformations (9), whereas the equations of motion for the
integral two-particle operator can be simply written in the
starting representation.

The Hamiltonian (1) with the broken gauge symmetry is
written below in the lowest approximation of the theory of
quasi-averages [15]. Side by side with the last term in (10) there
are another smaller terms breaking the gauge symmetry. They
were neglected. This approach is named as quasi-averages theory
approximation [11].

Ĥ ¼ 1

2

X
Q
!

W
Q
!½rðQ

!
Þrð�Q
!
Þ�N̂e�N̂h��meN̂e

�mhN̂hþ
1

2
Bi�i

bN� 1

4N

X
Q

VðQ Þr̂ðQ
!
Þr̂ð�Q
!
Þ

�
1

4N

X
Q

UðQ ÞD̂ðQ
!
ÞD̂ð�Q
!
Þ� ~Z

ffiffiffiffi
N
p
ðdyðkÞþdðkÞÞ: ð10Þ

Here the parameter ~Z, which determines the breaking of the
gauge symmetry, depends on the chemical potential m and on the
square root of the density similar to the case of weakly non-ideal
Bose-gas considered by Bogoliubov [15]. In our case the density is
proportional to the filling factor n¼ v2. We have

m¼ meþmh, m ¼ mþ Il, Nex ¼ v2N,

~Z ¼ ð ~EexðkÞ�mÞv¼ ðEðkÞ�DðkÞ�mÞv,

~EexðkÞ ¼�Il�DðkÞþEðkÞ,

EðkÞ ¼ 2
X

Q

WQ sin2 ½K � Q �zl2

2

 !
: ð11Þ

DðkÞ � r determines the shift of the ionization potential Il [9].
3. Energy spectrum of collective elementary excitations

The equations of motion for the integral two-particle operators
with wave vectors P

!
a0 in the special case of BEC of magne-

toexcitons with k
!
¼ 0 are

i_
d

dt
dð P
!
Þ¼ ð�mþEð P

!
Þ�Dð P
!
ÞÞ dð P
!
Þ

�2i
X
Q
!

~W ðQ
!
Þ sin

½ P
!
� Q
!
�zl2

2

 !
r̂ðQ
!
Þdð P
!
�Q
!
Þ�

1

N
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�
X
Q
!

UðQ
!
Þ cos

½ P
!
� Q
!
�zl2

2

 !

�DðQ
!
Þdð P
!
�Q
!
Þþ ~ZDð P

!
Þffiffiffiffi

N
p , ð12Þ

i_
d

dt
r̂ð P
!
Þ¼�i

X
Q
!

~W ðQ
!
Þ sin

½ P
!
� Q
!
�zl2

2

 !

�½r̂ð P
!
�Q
!
Þr̂ðQ
!
Þþr̂ðQ

!
Þr̂ð P
!
�Q
!
Þ�

þ
i

2N

X
Q
!

UðQ
!
Þ sin

½ P
!
� Q
!
�zl2

2

 !

�½Dð P
!
�Q
!
ÞDðQ
!
ÞþDðQ

!
ÞDð P
!
�Q
!
Þ�,

i_
d

dt
D̂ð P
!
Þ¼�i

X
Q
!

~W ðQ
!
Þ sin

½ P
!
� Q
!
�zl2

2

 !

�½r̂ðQ
!
ÞD̂ð P
!
�Q
!
ÞþD̂ð P

!
�Q
!
Þr̂ðQ
!
Þ�

þ
i

2N

X
Q
!

UðQ
!
Þ sin

½ P
!
� Q
!
�zl2

2

 !

�½D̂ðQ
!
Þr̂ð P
!
�Q
!
Þþ r̂ð P

!
�Q
!
ÞD̂ðQ
!
Þ�

þ2 ~Z
ffiffiffiffi
N
p
½dð P
!
Þ�dyð� P

!
Þ�,

where ~W ðQ
!
Þ¼WðQ

!
Þ�VðQ
!
Þ=2N.

Following the equations of motion (12) we have introduced
four interconnected Green’s functions G1jðP,tÞ as well as their
Fourier transformations G1jðp,oÞ at T¼0 [16,17] of the type
G1jðP,tÞ ¼0AjðP,tÞ;BðP,0ÞT, where A1ðP,tÞ ¼ dðP,tÞ,A2ðP,tÞ ¼
dyð�P,tÞ,A3ðP,tÞ ¼ rðP,tÞ=

ffiffiffiffi
N
p

,A4ðP,tÞ ¼DðP,tÞ=
ffiffiffiffi
N
p

, and an arbitrary
operator BðP,0Þ because its choice does not influence on the
energy spectrum of the system. These Green’s function can be
named as one-operator Green’s functions. At the right hand sides
of the corresponding equations of motion there is a second
generation of the two-operator Green’s functions. A second
generation of equations of motion derived for them containing
in their right hand sides the three-operator Green’s functions.
Following the procedure proposed by Zubarev [17] the truncation
of the chains of equations of motion was made and the three-
operator Green’s functions were presented as a products of one-
operator Green’s functions Gi,jðP,oÞ multiplied by the averages of
the type /DðPÞDð�PÞS. The average values were calculated using
the ground state wave function (7) and the u–v transformations
(9). For example, it was obtained

/DðPÞDð�PÞS¼ 4u2v2N, /rðPÞrð�PÞS¼ 0: ð13Þ

The Zubarev procedure is equivalent to a perturbation theory
with a small parameter of the type v2ð1�v2Þ. The closed system of
Dyson equations has the form

X4

j ¼ 1

G1ið P
!

,oÞSijð P
!

,oÞ ¼ C1j, j¼ 1,2,3,4: ð14Þ

There are 16 different components of the self-energy parts
Sjkð P
!

,oÞ forming a 4�4 matrix. Four diagonal self-energy parts
are

S11ð P
!

,oÞ ¼�Sn

22ð� P
!

,�oÞ

¼ _oþ idþm�Eð P
!
ÞþDð P

!
Þ�

/Dð P
!
ÞDð� P
!
ÞS

N2
�
X

Q
!

a P
!

U2
ðQ
!
Þ cos2 ½ P

!
� Q
!
�zl2

2

 !
_oþ idþm�Eð P

!
�Q
!
ÞþDð P

!
�Q
!
Þ

,

S33ð P
!

,oÞ ¼ _oþ id�
/Dð P
!
ÞDð� P
!
ÞS

N2
ð_oþ idÞ

�
X

Q
!

a P
!

UðQ
!
ÞðUð�Q

!
Þ�UðQ
!
� P
!
ÞÞ sin2 ½ P

!
� Q
!
�zl2

2

 !
;

S44ð P
!

,oÞ ¼ _oþ id�
2/Dð P

!
ÞDð� P
!
ÞS

Nð_oþ idÞ

�
X

Q
!

a P
!

~W ðQ
!
ÞðUðQ
!
� P
!
Þ�Uð P
!
ÞÞ sin2 ½ P

!
� Q
!
�zl2

2

 !

þ
/Dð P
!
ÞDð� P
!
ÞS

N2
ð_oþ idÞ

X
Q
!

a P
!

UðQ
!
ÞðUð P
!
Þ�Uð�Q

!
ÞÞ

�sin2 ½ P
!
� Q
!
�zl2

2

 !
: ð15Þ

They contain real and imaginary parts as follows Sijð P
!

,oÞ ¼
sijð P
!

,oÞþ iGð P
!

,oÞ. The cumbersome dispersion equation for
electron-hole collective excitations is expressed in general form
by the determinant equation

det9Sijð P
!

,oÞ9¼ 0: ð16Þ

Due to the structure of the self-energy parts, it separates into two
independent equations. One of them concerns only the optical
plasmon branch, corresponding to oscillations of the difference of
electron and hole densities and has a simple form

S33ð P
!

,oÞ ¼ 0: ð17Þ

It does not include at all the chemical potential m and the quasi-
average constant ~Z. But the average values depends also on the
condensate wave function (7).

The solution of Eq. (17) is

ð_oð P
!
ÞÞ

2
¼

/Dð P
!
ÞDð� P
!
ÞS

N2

X
Q
!

sin2 ½ P
!
� Q
!
�zl2

2

 !

�UðQ
!
ÞðUð�Q

!
Þ�UðQ
!
� P
!
ÞÞ: ð18Þ

The right hand side of this expression at small values of P has a
dependence 9P94

and tends to saturate at large values of P. The
optical plasmon branch _oOPðPÞ has a quadratic dispersion law in
the long wavelength limit and saturation dependence in the range
of short wavelengths. Its concentration dependence is of the typeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ð1�v2Þ
p

what coincides with the concentration dependencies
for three-dimensional and two-dimensional plasmons. The
obtained dispersion law is represented in Fig. 1.

The second equation contains the self-energy parts S11, S22,
S44, S14, S41, S24, and S42, which include the both parameters m
and ~Z and has the form

S11ð P
!
;oÞS22ð P

!
;oÞS44ð P

!
;oÞ

�S41ð P
!
;oÞS22ð P

!
;oÞS14ð P

!
;oÞ

�S42ð P
!
;oÞS11ð P

!
;oÞS24ð P

!
;oÞ ¼ 0: ð19Þ

The solutions of Eq. (19) describe the exciton energy and quasi-
energy branches arising due to the normal and abnormal Green’s
functions as well as the acoustical plasmon branch. The ideal
magnetoexciton gas can exist only in the case v2 ¼ 0, with an
infinitesimal number of excitons, but without plasma at all. In this



Fig. 1. Three branches of the collective elementary excitations: the exciton-type

quasi-NG mode with a gap in the point pl¼0 (dash-dotted line), the second-type

NG mode describing the optical plasmons (solid line), and the first-type NG mode

with absolute instability (dotted line) describing the acoustical plasmons

(dashed line).
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case the plasmon frequency is zero whereas the exciton of one
exciton is possibly.

In the zero order approximation on the concentration, when
n¼ v2 ¼ 0 the real parts siið P

!
,oÞ look as

s11ð P
!

,oÞ ¼�s22ð� P
!

,�oÞ ¼ _oþm�Eð P
!
ÞþDð P

!
Þ,

s33ð P
!

,oÞ ¼ s44ð P
!

,oÞ ¼ 0,

~Z ¼ 0, mþDð0Þ ¼ 0: ð20Þ

In this limit the energy needed to excite the magnetoexciton with
k
!
¼ 0 in the state with P

!
a0 equals to Eð P

!
Þ, whereas the plasma

oscillations do not exist at all. In this approximation the exciton
branches of the spectrum are gapless and true NG modes. In the
first order approximation on the small parameter v2ð1�v2Þ we
have a non-ideal Bose gas and the self-energy parts (15) contain
terms linear and quadratic in the interaction constant Uð P

!
Þ. The

last terms have the denominators with unknown frequency what
increase the number of the solutions. They also can be taken into
an account also by the iteration method. The first step in this
direction gives the following parts sijð P

!
,oÞ:

s11ð P
!

,oÞ ¼�s22ð� P
!

,�oÞ ¼ _oþm�EðPÞþDðPÞ,

s41ð P
!

,oÞ ¼� ~ZþUðPÞ
/dð0ÞSffiffiffiffi

N
p ,

s42ð P
!

,oÞ ¼ ~Z�Uð�PÞ
/dð0ÞSffiffiffiffi

N
p ,

s14ð P
!

,oÞ ¼�2 ~Z, s24ð P
!

,oÞ ¼ 2 ~Z,

s44ð P
!

,oÞ ¼ _o: ð21Þ

Now the exciton branches of the spectrum transform from the
true into the quasi-NG modes with the gaps in the point P

!
¼ 0 as

follows:

_o¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�Eð P

!
ÞþDð0ÞÞ2þ4 ~Z ~Z�Uð P

!
Þ/dð0ÞSffiffiffiffi

N
p

 !
:

vuut
ð22Þ

In this approximation the acoustical plasmon branch continues to
vanish. Taking into an account the quadratic terms on the
interaction constant Uð P

!
Þ we have obtained the corrections to

the exciton branches of the spectrum and the dispersion law for
the acoustical plasmon mode.

The acoustical plasmon branch corresponding to oscillations of
the total particle density has a dispersion law completely differ-
ent from the optical plasmon oscillations. It has an absolute
instability beginning with small values of wave vector going on
up to the considerable value Pl� 2. In this range of wave vectors,
the optical plasmons have energies which do not exceed the
activation energy Uð0Þ. The supplementary Hamiltonian gives rise
to general attraction in Hartree approximation, characterized by
the coefficients Uð0Þ. It plays the role of activation energy if one
should like to overpass this attraction. The ground state of the
system is unstable as regards the generation of the acoustical
plasmons. It means that the system becomes a localized generator
of the growing acoustical waves without their traveling through
the system as in the case of convective instability.

In the case of two-dimensional magnetoexcitons in the BEC
state with small wave vector klo0:5 described by the Hamilto-
nian (10), the both initial continuous symmetries are lost. It
happened due to the presence of the term ~Zðdyð k

!
Þþdð k
!
ÞÞ in

the frame of the Bogoliubov theory of the quasi-averages. Never-
theless the energy of the ground state as well as the self-energy
parts SijðP,oÞ were calculated only in the simplest case of the
condensate wave vector k

!
¼ 0. These expressions can be relevant

also for infinitesimal values of the modulus 9k9 but with a well
defined direction. In this case the symmetry of the ground state
will be higher than that of the Hamiltonian (10), what coincides
with the situation described by Georgi and Pais [18]. It is one
possible explanation of the quasi-NG modes appearance in the
case of exciton branches of the spectrum. Another possible
mechanism of the gapped modes appearance is the existence of
the local gauge symmetry, the breaking of which leads to the
Higgs effect [19]. The interaction of the electrons with the
attached vortices gives rise to a gapped energy spectrum of the
collective elementary excitations as was established in Refs.
[20,21]. The number of the NG modes in the system with many
broken continuous symmetries was determined by the Nielsen
and Chadha [22] theorem. It states that the number of the first-
type NG modes NI being accounted once and the number of the
second-type NG modes NII being accounted twice equals or
prevails the number of broken generators NBG. It looks as follows
NIþ2NIIkNBG. In our case the optical plasmon branch has the
properties of the second-type NG modes. We have NI ¼ 0; NII ¼ 1,
and NBG ¼ 2. It leads to the equality 2NII ¼NBG. The three branches
of the energy spectrum are represented together in Fig. 1. One of
them is a second-type Nambu–Goldstone(NG) mode describing
the optical plasmon-type excitations, the second branch is the
first-type NG mode with absolute instability describing the
acoustical-type excitations and the third branch is the quasi-NG
mode describing the exciton-type collective elementary excita-
tions of the system. It is a gapless true NG mode in zero order
approximation on the small parameter v2ð1�v2Þ and become
gapped in the first order approximation due to the fact that the
symmetry of the ground state with small condensate wave vector
k
!

is greater than the symmetry of the Hamiltonian.
4. Conclusions

The energy spectrum of the collective elementary excitations
of a two-dimensional electron-hole system in a strong perpendi-
cular magnetic field in the state of Bose–Einstein condensation
with wave vector k

!
¼ 0 was investigated in the framework of the

Bogoliubov theory of quasi-averages. The starting Hamiltonian
describing the e–h system contains not only the Coulomb inter-
action between the particles lying on the lowest Landau levels but
also a supplementary interaction due to their virtual quantum
transitions from the LLLs to the excited Landau levels and back.
This supplementary interaction generates, after the averaging on
the ground state BCS-type wave function, direct Hartree-type
terms with an attractive character, exchange Fock-type terms



S.A. Moskalenko et al. / Solid State Communications 155 (2013) 57–61 61
giving rise to repulsion, and similar terms arising after the
Bogoliubov u–v transformation. The interplay of these three
parameters gives rise to the resulting nonzero interaction
between the magnetoexcitons with wave vector k

!
¼ 0 and to

stability of their BEC as regards the collops.
The separated electrons and holes remaining on their Landau

orbits can take part in the formation of magnetoexcitons as well as in
collective plasma oscillations. Such possibilities were not taken into
consideration in the theory of structureless bosons or in the case of
Wannier–Mott excitons with a rigid relative electron-hole motion
structure without the possibility of the intra-series excitations.

The energy spectrum of the collective elementary excitations
consists of four branches. Two of them are excitonic-type branches
(energy and quasi-energy branches). The other two branches are the
optical and acoustical plasmon branches. We can say that results
obtained in our system are similar to what was obtained in system
of BEC of the quantum Hall excitons [11]. In these both models there
is only one gapless Nambu–Goldstone mode between four branches
of the energy spectrum. In both models the exciton branches of the
spectrum are not gapless and differ from the NG modes. In our case
the exciton energy and quasi-energy branches corresponding to
normal and abnormal Green’s functions have a gaps in the point
P¼0, a roton-type segments in the region of intermediary wave
vectors Pl� 1, and saturation-type behaviors at great values of Pl.
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